

Photons and Dilepton Measurements in PHENIX

Sky Rolnick PHENIX Collaboration

Heavy Ion Collisions

- Dileptons and photons are penetrating probes
- Produced during all stages of collision
- Very small interaction cross section with QGP
- Contributions from many production mechanisms
- Yields sensitive to temperature and collective motion of source

Dielectrons in PHENIX

PRC 81, 034911 (2010)

Low mass:

resonances/ Dalitz decays

Intermediate mass:

semi-leptonic heavy flavor

High mass:

resonances/hard processes

Strong enhancement of e+e- pairs at low masses, factor of $4.7\pm0.4^{\text{stat}}\pm1.5^{\text{syst}}\pm0.9^{\text{model}}$ (m=0.2-0.7 GeV/c²).

Currently no theory successfully explains this excess.

HBD Detector Concept

NIM A646, 35 (2011)

Successfully operated: 2009 p+p data 2010 Au+Au data

Windowless Cherenkov detector GEM, CSI photo-cathode Pure CF4: N_o = 322 cm⁻¹ 2.4% total radiation length.

Heavier meson decays have large opening angles. Dalitz decays and conversions tightly peaked around $2m_e$.

Possible to identify e+e- from π^o Dalitz decays and conversions by the opening angle.

First Dilepton Results with HBD

PHENIX 2009 data set

- Higher Statistics than 2005 data.
- Excellent agreement between data and cocktail.
- Baseline for Au+Au analysis, provides testing ground for understanding the HBD.
- Fully consistent with published result PR C81, 034911 (2010)

Dilepton Results in AuAu

Dielectron Spectrum for 3 centrality classes: 60-92%, 40-60%, 20-40%

Au+Au Comparison

Semi-central

Data/Cocktail LMR (m=0.15-0.75 GeV/c²)	(value ± stat ± sys)
PHENIX Run 4 (20-40%)	$1.4 \pm 0.3 \pm 0.4$
PHENIX Run 10 (20-40%) (preliminary)	$1.98 \pm 0.3 \pm 0.9$

What are Direct Photons?

Direct photons are anything not considered hadron decay photons.

$$\gamma^{Direct} = \gamma^{All} - \gamma^{Decay}$$

• There are several sources of direct photons. Each carrying specific information about the medium.

$$\frac{dN_{\gamma}^{Direct}}{d^{2}p_{T}dy}(M,b) = E\frac{dN_{\gamma}^{prompt}}{d^{3}p} + E\frac{dN_{\gamma}^{QGP}}{d^{3}p} + E\frac{dN_{\gamma}^{HG}}{d^{3}p} + \dots$$

Turbide, Rapp, Gale, Phys. Rev. C 69 (014903), 2004

 Azimuthal anisotropy of direct photons should allow us to extract these different components.

Direct Photon Measurement methods

3 techniques at PHENIX

- Measure photons that directly deposit energy into the EMCal
 - Statistically subtract hadron decay γ from inclusive γ
 - Works best at higher momentum pT>5GeV/c
- Measure virtual photons that internally convert into e⁺e⁻ pairs
 - Yield of virtual photons is related to real photon production
 - Allows a clean low p_T measurement pT<5GeV/c
- Measure real photons that externally convert in material into e⁺e[−] pairs
 - Complementary to virtual photon method

Large background from hadron decays makes analysis difficult

Measuring Photons in Au+Au using EMCal

Relation between Real and Virtual Photons

Kroll-Wada Formula

$$e^{-}$$
 $\frac{d^2 N_{ee}}{dm_{ee} dp_T} \approx \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} \sqrt{1 - \frac{4m_e^2}{m_{ee}^2}} \left(1 + \frac{2m_e^2}{m_{ee}^2}\right) S(m, q) \frac{dN_{\gamma}}{dp_T}$

As
$$m_{ee}/p_T \rightarrow 0$$
, then

$$\frac{d^2 N_{ee}}{dm_{ee}dp_T} \approx \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} \frac{dN_{\gamma}}{dp_T}$$

- Processes which produce real photons can also produce virtual photons which materialize as electron pairs.
- Real photon production can be determined from the excess electron pairs.

Enhancement of almost real photon

p+p

- Good agreement of p+p data and hadronic decay cocktail
- Small excess in p+p at large m_{ee} and high p_T

Au+Au

• Clear enhancement visible above π^0 mass for all p_T

PRL 104, 132301 (2010)

Extracting the Fraction of Direct Photons

PRL 104, 132301 (2010)

- Measure low mass, high momentum dileptons
- Kinematic region of e⁺e⁻ pairs m<300 MeV and 1<p_T<5 GeV/c
- Analyze above π^o mass to remove
 90% of hadron background
- Fit mass distribution with a twocomponent function
- This excess is used to infer the yield of real direct photons by extrapolating to $m_{ee} = o$.

$$f(m_{ee}) = (1 - r) \cdot f_{cocktail}(m_{ee}) + r \cdot f_{direct}(m_{ee}) \qquad \qquad r_{\gamma} = \frac{\gamma_{dir}^*(m > 0.15)}{\gamma_{inc}^*(m > 0.15)} \propto \frac{\gamma_{dir}^*(m \approx 0)}{\gamma_{inc}^*(m \approx 0)} = \frac{\gamma_{dir}}{\gamma_{inc}}$$

Direct Photons In Different Systems

- PHENIX has measured low p_T direct photon ratio in various collision systems, showing clear enhancement in Au+Au and Cu+Cu.
- Essentially no enhancement is observed for p+p and d+Au.
- CNM effect measured in d+Au does not explain the excess in Cu+Cu Au+Au

Direct Photon Production in PHENIX

$$\gamma_{direct} = \gamma_{incl.} \cdot \frac{\gamma *_{direct}}{\gamma *_{incl.}}$$

- For p+p consistent with pQCD down to $p_T=1 \text{ GeV/c}$
- For Au+Au there is a significant low p_T excess above p+p expectations.
- Exponential consistent with thermal

$$T_{ave}$$
=221±19^{stat}±19^{sys} MeV

A. Adare et al., PRL104,132301(2010)

Comparing the Yield to Theory

Derive limits on temperature by interpreting excess as Thermal Radiation

- Fitting excess has slope of T~220MeV implies initial temperature of 300-600 MeV depending on model.
- Thermalization time range from about 0.6 to 0.15 fm/c

Direct photons in d+Au

- Direct photons in d+Au measured via 3 independent methods:
 - virtual photons
 - πο tagging
 - statistical subtraction
- The NLO pQCD fit to the p+p data, scaled by Ncoll, reproduces well the d+Au data
- No excess of photons.

Direct photons in d+Au and Au+Au

- R_{dA} is consistent with unity
- No excess in d-Au collisions

- Large excess of γ
 observed in Au+Au is
 not due to initial state
 effects
- Reinforce interpretation of the Au+Au excess as thermal radiation.

Direct Photons & Collective Flow

Elliptic Flow

- A nucleus-nucleus collision is typically not head on.
- Overlapping region forms initial almond-shape anisotropy.
- Spatial anisotropy $\rightarrow p_T$ anisotropy

- To describe the evolution of the shape use a Fourier decomposition, i.e. flow coefficients \mathbf{v}_n
- Large azimuthal anisotropies in the particle emission are collective phenomena.

Disentangling the sources

Measurements of v2 could give information on specific stages of the

fireball expansion.

Initial collision Hard scattering of partons v2=0 Pre-thermalized radiation v2=?

QGP
Thermal radiation v2>0
Jet Fragmentation v2>0
Bremsstrahlung v2<0
Jet conversions v2<0

Hadron Gas
Thermal radiation v2>0

 $\begin{array}{l} \mbox{High p_T phenomenon.} \\ \mbox{Reflective of geometry not dynamics.} \end{array}$

Direct photon Elliptic Flow

How to determine elliptic flow of direct photons?

- Establish R_{γ} as fraction of inclusive photons over decay photons.
- Measure v₂ for inclusive photon yield correcting for hadron contamination.
- Predict hadron decay photon v₂ from measured pion v₂ and ncq scaling of other hadrons.
- Subtract hadron decay contribution from inclusive photon v_2 to arrive at direct photon v_2 .

$$\mathbf{v}_2^{\text{dir.}} = \frac{R_{\gamma} \mathbf{v}_2^{\text{inc.}} - \mathbf{v}_2^{\text{BG}}}{R_{\gamma} - 1}$$

Direct photon v₂

- We observe a significant direct photon signal with significant v₂
- Similar to inclusive photon and π^0 v₂ at low momentum
- v_2 drops to zero for $p_T > 5$ GeV, where hard processes dominate

Nice Crosscheck: External Conversions!

$$v_2^{dir.} = \frac{R_{\gamma} v_2^{inc.} - v_2^{BG}}{R_{\gamma} - 1}$$

- Independent analysis
- Different systematics
- pT range extended down to 0.5 GeV/c

Thermal Photon Puzzle

R. Chatterjee & D. K. Srivastava, PRC 79, 021901 (2009)

- Very surprising result: large v2 implies late emission whereas high temperature implies early emission.
- Difficult to reconcile with the current understanding of the evolution. Theory mostly underpredicts.
- Possibly other sources of low p_T photons other than thermal radiation?

What does it mean? Compare to theory

Chatterjee, Srivastava PRC79, 021901 (2009) PHENIX, arXiv:1105.4126

Hydrodynamics with a thermalization at early times followed by hadronization and decoupling.

H. van Hees, C. Gale, R. Rapp Phys. Rev. C 84, 054906 (2011)

Thermal radiation dominated by hadronic phase. Hadronic phase lasts longer and elliptic flow builds up faster.

Summary & Conclusions

- Electromagnetic radiation has great potential to explore general properties and early time dynamics of Quark Gluon Plasma.
- Looking at dielectron pairs is a nice tool to get a clean direct photon signal at low p_T
- PHENIX has measured direct photons in various collisional systems (including baseline p+p, d+Au, Cu+Cu, and Au+Au)
- No significant enhancement in the baseline systems p+p and d
 +Au, but significant enhancement in A+A
- Large elliptic flow observed for direct photons which remains a bit of a mystery.
- Theorist are working on reconciling these measurements.

Dielectrons in PHENIX

Detector	Δη	Δφ	Field
PHENIX Central Arms	+/- 0.35	180°	up to 1.15 T

Inner and outer magnet coils producing field-free region for r < 55 cm

Typically only 1 electron from a pair falls within the PHENIX acceptance.

Both members of the pair are needed to reconstruct a Dalitz decay or a γ conversion.

Limited geometrical acceptance of present PHENIX configuration.

Experimental challenge: huge combinatorial background arising from e^+e^- pairs from copiously produced from π^o Dalitz decay and γ conversions.

HBD Performance

Double electron charge peaks at ~40 pe e+e- small opening angle (<30 mrad) → Dalitz or conversion candidate

Good single to double separation

Cocktail

Hadronic cocktail is estimated using measured data from π^o and charged pions fit to a modified Hagedorn function. m_T scaling is used for shape of other hadrons.

$$E\frac{d^3\sigma}{dp^3} = A\left(e^{-\left(ap_T + bp_T^2\right)} + p_T/p_0\right)^{-n}$$

$$p_T \to \sqrt{p_T^2 - m_{\pi^0}^2 + m_h^2}$$

Open heavy flavor (c,b) contributions determined using MC@NLO

PRC 81, 034911 (2010)

MC@NLO

Negligible difference in total cocktail when using PYTHIA vs MC@NLO for open heavy flavor.

MC@NLO reproduces the measured pT distributions of e+e- pairs as opposed to PYTHIA.

Cocktail Comparison

The J/Psi mass is modified to account for detector resolution and radiative corrections. The final cocktail is modified to use the +- field configuration for PHENIX in Run 9.

Cocktail Comparison

The dielectron mass spectrum obtained from this analysis compared to the previously published PHENIX Run5 p+p analysis.

Background Subtraction

• Like sign subtraction technique is used to remove combinatorial background and correlated background.

Au+Au analysis Details

Two independent analysis streams: provide crucial consistency check In both analyses, the combinatorial background is subtracted using mixed events.

Stream A

HBD: underlying event subtraction using average charge per pad

Neural network for eid and for single/double electron separation

Correlated background (cross pairs and jets) subtracted using acceptance corrected like-sign spectra

Stream B

HBD: underlying event subtraction using average charge in track projection neighborhood

Standard 1D eid cuts and single/double electron separation

Correlated background subtracted using MC for the cross pairs and jet pairs.

Results for stream A will be compared to cocktail: 60-92%, 40-60%, 20-40% Results for stream B are used as a cross check.

Strong run QA and strong fiducial cuts in both analysis streams

Steps in Analysis

The E/p distribution for each step of the analysis.

Track reconstruction Electron selection cut HBD projection cut HBD strut cut pT > 0.2 GeV/c HBD matching Neural network eID

NN input variables: E/p, prob, no, chi2/npeo, disp, hbdid, hbdsize

HBD double Hit Rejection

Simulated single and double charge response for clusters containing 2 pads.

Efficiency and rejection for centrality 70-80%.

Neural Network Details

Background Subtraction

$$S = FG12 - \alpha \cdot FG1122$$

$$S = FG12 - \frac{BG12}{BG1122} \cdot FG1122$$

$$FG1122 = FG11 + FG22.$$

- Assuming that the likesign spectra contain no correlated pairs, the normalization is quite simple.
- However, the assumption of no correlated pairs in the same event likesign distributions is wrong!
- There are indeed correlations that need to be excluded when taking the ratio of (same event)/(mixed event) in the likesign.

Background Subtraction

- Two types of background pairs.
 - Combinatorial background pairs. (mixed event)
 - Correlated background pair i.e. $\pi o \rightarrow e^+e^-\gamma \rightarrow e^+e^-e^+e^-$ or $\pi \rightarrow \gamma \gamma \rightarrow e^+e^-e^+e^-$, also cross pairs and jet pairs. (acceptance corrected like-sign subtraction)

Signal = FG - Combinatorial BG - Correlated BG

$$Correlated BG = \alpha \times \sqrt{(FG11 - N_{11} \times BG11)(FG22 - N_{22} \times BG22)}$$

$$\alpha(m, p_T) = \frac{BG12(m, p_T)}{\sqrt{BG11(m, p_T) \cdot BG22(m, p_T)}}$$

 $S = FG12 - N_{12} \times BG12 - CorrelatedUnlike$

Background Subtraction Issues

- The calculation is performed differentially in mass and pT thereby significantly reducing the statistics in any given bin.
- The S/B is lowest around in this region.
- The like-sign spectrum suffers from a reduction in statistical precision in this region due to the PHENIX two-arm acceptance.
- The relative acceptance correction (α) and it's associated systematic uncertainty are largest in the region mass~0.5GeV/c² and pT~0.5GeV/c.

The HBD analysis in Au+Au: matching of tracks to the HBD

Monitoring the efficiency and the rejection:

- * Efficiency studied using MC electrons from ϕ -> e⁺e⁻ embedded in Au+Au data
- Rejection of mis-identified hadrons and random matching determined from the data

 Very high rejection achieved while keeping a high efficiency even in the most central events

Performance in Au+Au collisions

• The SB reconstruction subtracts local background based on triplets around track projections.

Consistency between streams A and B

Direct Photon Elliptic Flow

• PHENIX has measured the elliptic flow of direct photons using a combination of techniques.

$$\mathbf{v}_{2}^{\text{dir.}} = \frac{\mathbf{R}_{\gamma} \mathbf{v}_{2}^{\text{inc.}} - \mathbf{v}_{2}^{\text{BG}}}{\mathbf{R}_{\gamma} - 1}$$

- R_{γ} is the fraction of direct photon, $\gamma^{incl}/\gamma^{hadron}$
- v_2^{BG} is the v_2 of photons from hadron decays
- v_2^{inc} is the measured v_2 of all photons

R_v Via Real and Virtual Photons

$$R_{\gamma} = \frac{N_{\gamma}^{inclusive}}{N_{\gamma}^{BG}}$$

$$\mathbf{v}_{2}^{\text{dir.}} = \frac{\mathbf{R}_{\gamma} \mathbf{v}_{2}^{\text{inc.}} - \mathbf{v}_{2}^{\text{BG}}}{\mathbf{R}_{\gamma} - 1}$$

Measure through a double ratio

$$R_{\gamma} = \frac{\gamma^{incl}(p_{T})}{\gamma^{hadr}(p_{T})} = \frac{\varepsilon_{\gamma}(p_{T})f(p_{T}) \cdot \left(\frac{N_{\gamma}^{incl}(p_{T})}{N_{\gamma}^{\pi^{0}tag}(p_{T})}\right)_{Data}}{\left(\frac{N_{\gamma}^{hadr}(p_{T})}{N_{\gamma}^{\pi^{0}}(p_{T})}\right)_{Sim}}$$

Tag photons as coming from π^0 decays. Other decays accounted for with a cocktail

An excess of direct photons above the inclusive sample quantified as a ratio of inclusive to hadronic decay photons.

Inclusive photon v₂

$$v_2^{dir.} = \frac{R_{\gamma} v_2^{inc.} - v_2^{BG}}{R_{\gamma} - 1}$$

- Photons measured in the EMCal
- PID consists of
 - Shower shape cut
 - Charged track veto with PC
- Hadron contamination below 6 GeV
 - o up to 20% below 2 GeV deposited energy
 - Correct for this with GEANT sim

$$v_2^{\gamma, \text{obs}} = \frac{v_2^{\gamma, \text{meas}} - (N^{\text{hadr}}/N^{\text{meas}})v_2^{\text{hadr}}}{1 - N^{\text{hadr}}/N^{\text{meas}}}$$

Hadron Decay Photon v₂

- We only measure π^0 v₂
 - o about 80% of BG
- Assume v₂ of other hadrons from KE_T scaling
- v₂ modulation put into cocktail
- cocktail gives the total BG v₂
 from decay photons

$$v_2^{dir.} = \frac{R_{\gamma} v_2^{inc.} - v_2^{BG}}{R_{\gamma} - 1}$$

What does it mean? Compare to theory (I)

- Flow takes time to develop
 - QGP photons have small v₂
 - Hadron gas thermal photons have large v₂
- Does not account for data
- Is there something wrong with this picture?

Theory Comparison (II)

H. van Hees, C. Gale, R. Rapp Phys. Rev. C 84, 054906 (2011)

- Important features/differences from hydrodynamic expansion
 - Hadronic phase includes meson-chemical potentials
 - \circ Hadronic phase lasts longer (smaller T_{fo} and larger T_{ch})
 - Elliptic flow builds up faster
- Thermal radiation dominated by hadronic phase.

Theory Comparison (III)

V. Pantuev, arXiv:1105.4033v1

- Nothing about photon production included in model
 - Assume thermal shape and normalize to data
 - Describes effect of Doppler shift

$$\begin{split} dN/d\omega_0 &= \exp(-\omega_0/T),\\ \omega &= \omega_0 \frac{\sqrt{1-\beta^2}}{1-\beta cos\theta}.\\ dN/dE &= \frac{1-\beta_T cos\theta}{\sqrt{1-\beta^2}} exp(-\frac{E(1-\beta_T cos\theta)}{T\sqrt{1-\beta^2}}). \end{split}$$

Cylindrical expanding fireball

Systematic error of direct photon v_2

TABLE I: Representative values of systematic uncertainties contributing to the direct photon v_2 measurement, shown for various p_T ranges for minimum bias collisions

Source	$13\mathrm{\acute{G}eV}/c$	10 – $16 { m \acute{G}eV}/c$	Type
inclusive $\gamma \ v_2$			
remaining hadrons	2.2%	N/A	A
v_2 extraction method	0.4%	0.6%	В
$\pi^0 v_2$			
particle ID	3.7%	6.0%	A
normalization	0.4%	7.2%	A
shower merging direct γ	N/A	4.0%	В
R_{γ}	3.1%	22%	A
common reaction plane	6.3%	6.3%	С